<u>Steps for D.C Analysis of</u> <u>MOSFET Circuits</u>

To analyze MOSFET circuit with D.C. sources, we **must** follow these **five steps**:

- 1. ASSUME an operating mode
- 2. ENFORCE the equality conditions of that mode.

3. ANALYZE the circuit with the enforced conditions.

4. *CHECK* the inequality conditions of the mode for consistency with original assumption. If consistent, the analysis is complete; if inconsistent, go to step 5.

5. MODIFY your original assumption and repeat all steps.

Let's specifically look at each step in **detail**.

1. ASSUME

Here we have **three** choices—cutoff, triode, or saturation. You can make an "**educated guess**" here, but remember, until you CHECK, it's just a guess!

2. ENFORCE

For all three operating regions, we must ENFORCE just **one equality**.

<u>Cutoff</u>

Since **no** channel is induced, we ENFORCE the equality:

$$I_D = 0$$

Triode

Since the conducting channel **is** induced but **not** in pinch-off, we ENFORCE the equality:

$$\boldsymbol{I}_{D} = \boldsymbol{K} \Big[\boldsymbol{2} \big(\boldsymbol{V}_{GS} - \boldsymbol{V}_{t} \big) \boldsymbol{V}_{DS} - \boldsymbol{V}_{DS}^{2} \Big]$$

Saturation

Since the conducting channel **is** induced and **is** in pinch-off, we ENFORCE the equality:

$$\boldsymbol{I}_{\mathcal{D}}=\boldsymbol{K}\left(\boldsymbol{V}_{\mathcal{GS}}-\boldsymbol{V}_{\mathcal{T}}\right)^{2}$$

Note for all cases the constant K is:

 $\mathcal{K} \doteq \frac{1}{2} \mathcal{K}' \left(\frac{\mathcal{W}}{\mathcal{L}} \right)$

and V_{t} is the MOSFET threshold voltage.

3. ANALYZE

The task in D.C. analysis of a MOSFET circuit is to find **one** current and two voltages!

a) Since the gate current $I_{\mathcal{G}}$ is zero ($I_{\mathcal{G}} = 0$) for all MOSFETS in all modes, we need **only** to find the **drain current** $I_{\mathcal{D}}$ --this current value must be **positive** (or zero).

b) We also need to find **two** of the three **voltages** associated with the MOSFET. Typically, these two voltages are V_{GS} and V_{DS} , but given any two voltages, we can find the third using KVL:

$$V_{DS} = V_{DG} + V_{GS}$$

Some hints for MOSFET DC analysis:

1) Gate current $I_{G} = 0$ always !!!

2) Equations sometimes have **two** solutions! Choose solution that is **consistent** with the original ASSUMPTION.

Jim Stiles

4. CHECK

You do not know if your D.C. analysis is correct unless you CHECK to see if it is consistent with your original assumption!

WARNING!-Failure to CHECK the original assumption will result in a SIGNIFICANT REDUCTION in credit on exams, regardless of the accuracy of the analysis !!!

Q: What exactly do we CHECK?

A: We ENFORCED the mode **equalities**, we CHECK the mode **inequalities**.

We must CHECK **two** separate inequalities after analyzing a MOSFET circuit. Essentially, we check if we have/have not induced a conducting channel, and then we check if we have/have not pinched-off the channel (if it is conducting).

<u>Cutoff</u>

We must only CHECK to see if the MOSFET has a **conducting channel**. If **not**, the MOSFET is indeed in **cutoff**. We therefore CHECK to see if:

 $V_{GS} < V_{t}$ (NMOS)

 $V_{GS} > V_{t}$ (PMOS)

Here we must first CHECK to see if a channel has been induced,
i.e.:
$$V_{SS} > V_{r} \quad (NMOS)$$
$$V_{SS} < V_{r} \quad (PMOS)$$
Likewise, we must CHECK to see if the channel has reached
pinchoff. If not, the MOSFET is indeed in the triode region.
We therefore CHECK to see if:
$$V_{DS} < V_{SS} - V_{r} \quad (NMOS)$$
$$V_{DS} > V_{SS} - V_{r} \quad (PMOS)$$

Saturation

Here we must first CHECK to see if a channel has been induced, i.e.:

$$V_{es} > V_r$$
 (NMOS)

 $V_{es} < V_r$ (PMOS)

Likewise, we must CHECK to see if the channel has reached pinchoff. If it has, the MOSFET is indeed in the saturation region. We therefore CHECK to see if:

 $V_{DS} > V_{es} - V_r$ (NMOS)

 $V_{DS} > V_{es} - V_r$ (NMOS)

 $V_{DS} > V_{es} - V_r$ (NMOS)

 $V_{DS} < V_{es} - V_r$ (NMOS)

 $V_{DS} < V_{es} - V_r$ (PMOS)

If the results of our analysis are consistent with **each** of these inequalities, then we have made the **correct** assumption! The **numeric** results of our analysis are then likewise **correct**. We can **stop** working!

However, if **even one** of the results of our analysis is **inconsistent** with our ASSUMPTION, then we have made the **wrong** assumption! \rightarrow Time to move to step 5.

5. MODIFY

If **one or more** of the circuit MOSFETSs are **not** in their ASSUMED mode, we must change our assumptions and start **completely** over!

In general, **all** of the results of our previous analysis are incorrect, and thus must be **completely** scraped!